Quantifying the Benefit of Shared Information

Dr Tim Gardener, Professor Jim Moffat
Defence Science and Technology Laboratory
Farnborough United Kingdom

Abstract
New information technologies introduced into military operations provide the impetus to explore alternative operating procedures and command structures. New concepts such as network-centric operations and distributed, decentralised command and control, have been suggested as technologically enabled replacements for platform-centric operations and centralised command and control. As attractive as these innovations may seem, it is important that responsible military planners test these concepts before their adoption. To do this, it is necessary to build models and simulations and to conduct experiments and exercises.

The authors assess the flow of information within three alternative Command and Control (C2) structures using a series of quantitative measures of performance of command and control effectiveness.

The quantitative assessment of information flows within alternative C2 structures is part of a larger programme of work considering the structure of future headquarters for UK armed forces. Outputs are being compared with those of high level combat models in order to assess the quantitative linkage between our measures of C2 effectiveness and metrics of benefit at the campaign level, measures of force effectiveness.

1. Introduction

1.1 Network Enabled Capability

The key objective of Network Enabled Capability (NEC) is to allow platforms and C2 capabilities to exploit shared awareness and collaborative planning to communicate and understand command intent and to enable seamless battlespace management. The theory of NEC predicts that better information sharing leads to greater shared situational awareness. This translates, through better common decision making, into a force with greater capacity for self-synchronising. The point of this is to bring about improved force effectiveness.

NEC is mainly concerned with evolving capability by bringing together decision-makers, sensors and weapons systems, enabling them to pool their information by “networking” in order to achieve an enhanced capability.

The work presented in this paper assesses the theory of NEC by quantifying the value of information sharing. This is a huge challenge, and the work is still in progress. Nevertheless, building on the well established Theory of Information Entropy and the Rapid Planning Process (Moffat, 2002), researchers from RAND and Dstl have produced metrics for C2 Effectiveness which seek to capture the benefit of NEC. These metrics have been incorporated into the Collaboration Metric Model (CMM). Some simple alternatives for information sharing are then examined in this paper, using the model to demonstrate its potential utility.

Combining C2 metrics with high level combat modelling, in ongoing work we are investigating the connection between measures of C2 effectiveness and measures of force effectiveness. (See Figure 1.) Over many iterations of the simulation model and CMM, a relationship may be formed between

1 ©Crown Copyright material published with the permission of the Controller of Her Britannic Majesty’s Stationery Office, reference DSTL/CP10629. The views expressed in this paper are those of the authors and do not necessarily represent those of the UK Ministry of Defence (MoD) or HM Government.

2 Lt Gen Rob Fulton, high level mission statement for NEC.
measures of C2 effectiveness and measures of force effectiveness. In this way the work attempts to assess the impact of information sharing on combat outcome.

The combat model chosen for this work is HiLOCA – High Level Operations with Command Agents using Cellular Automata. HiLOCA is a research tool which represents HQ processes explicitly. It simulates the dynamic interaction between manoeuvre, firepower and support assets and the collection and processing of sensor-derived information.

Over many iterations of HiLOCA and CMM, a relationship may be formed between measures of C2 effectiveness and measures of force effectiveness. In this way the work attempts to assess the impact of information sharing on combat outcome.

2. The Collaboration Metric Model
2.1 Decisions in a Network

This approach brings together two sets of ideas, which have been developed thus far from rather different perspectives. The first is the Rapid Planning Process developed by Moffat (2002), which represents the decision-making of military commanders working under stressful, fast changing circumstances. The second comes from the work by Perry (2002), who modelled the effects of collaboration across alternative information network structures in prosecuting a time-critical task. By combining these two approaches, metrics can be developed which measure the overall benefit to decision making of sharing information across an information network (Perry & Moffat, 2004).

In most cases, decision makers must make decisions without full understanding of the values of the critical information elements needed to support those decisions. The decision taken depends upon the current values of these critical information elements, which are dependent on the scenario. That dependency is modelled using the Rapid Planning Process. The critical information elements form a frame of reference for the commander’s conceptual space. In the basic formulation of the Rapid Planning Process, the decision maker’s understanding of the values of these elements over time can be plotted as a curve within this space. This understanding is then compared with one or more of the fixed patterns within the commander’s conceptual space and, corresponding to this, a decision is taken.

The diagram in Figure 2 shows a conceptual space spanned by two critical information elements. Fixed patterns within this frame of reference are shown as stored situation ellipses. The decision maker’s current estimate of the values of these critical information elements is also plotted together with an ellipse representing the uncertainty of the estimates.

A probabilistic information entropy model is used to represent the uncertainty associated with the critical information elements needed for the decision. Through the Rapid Planning Process, information from collection assets or from collaborating elements in the network serves to reduce uncertainty and therefore increase understanding.

3 The HiLOCA tool is owned by QinetiQ Ltd, but was developed by the Defence Evaluation and Research Agency, the predecessor organisation of Dstl.
Knowledge - derived from entropy - is a quantity that reflects the degree to which the local decision maker understands the values of the information elements. It is represented as a number between 0 and 1 with the former representing poor or no understanding and 1 representing good or perfect understanding. From this knowledge, decision-makers can then assess whether or not they are in their ‘comfort zone’ that is, whether the values of the key information elements support the decision they wish to take (such as to launch the next attack mission.) Networks provide an opportunity for participating entities to share information as part of a collaborative process. Here we focus on the synergistic effects of collaboration that improve the quantity (the completeness of our information), and the quality (its precision and its accuracy) of the information needed to take decisions. We model the network as a combination of clusters of decision makers. Members of a cluster have full shared awareness - all entities in the cluster agree on the set of critical information elements, and their values at any given time.

Information sharing within a network ideally tends to lower information entropy (and hence increase knowledge) due to the build up of correlations among the critical information elements, and through filling in gaps. Thus, for example, information can be gained about one critical information element (for example, missile type) from another (for example, missile speed). Such cross coupling gives the correlation and this is a key aspect for investigation.

Our metrics quantify this process through the use of information entropy and knowledge measures.

The Collaboration Metric Model (CMM) is a mathematical model implemented as a spreadsheet. It can currently handle up to ten decision nodes, ten information elements, and ten information sources. This allows a reasonable representation of a headquarters or a network of headquarters. Metrics for network redundancy and information overload have recently been added to the model. The Overall Network Performance (ONP) metric now incorporates 6 sub-metrics as listed below.

1. Precision
2. Accuracy
3. Information Completeness
4. Network Redundancy
5. Information Overload – Unneeded Information
6. Information Overload – Redundant, Needed Information

Through observations of the battlespace, sensors and other information sources generate estimates for the information elements deemed critical to the decision. The uncertainty associated with the information elements is expressed in terms of probability distributions. The means of these distributions are estimates of the ground truth values. From these we derive estimates of precision and accuracy. These are then combined with a measure of information completeness to arrive at a single metric to assess the beneficial effects of collaboration across a cluster of information sharing entities. Network redundancy deals with receiving multiple reports of required information from several sources which will increase the reliability of the estimates of information elements in the model. When too

4 It would not be difficult to extend the model to cope with more than 10 nodes, elements or sources.
much information is provided to a decision maker, the collaboration metric is also reduced. There are two types of such information overload in the model. One is when nodes receive information that is not needed. The other is when they receive too much needed information. In each case, the additional information penalises the overall collaboration metric.

The 6 metrics can be roughly broken down into ‘Information’ based metrics (Precision, Accuracy, Information Completeness) and ‘Structure’ based metrics (Network Redundancy, Information Overload). Two things are needed to run the CMM—a network topology and information elements. Both could potentially be provided by operational data collected post-conflict, real-time data during an exercise, or from a combat model.

The Overall Network Performance metric (ONP) then combines all the measures of benefit of a particular clustering of information sharing entities (e.g. headquarters or parts of a headquarters) across the information network. The approach thus allows the exploration of alternative ways of forming information sharing clusters of decision makers, and a comparison of their likely effectiveness. From this, we can form hypotheses for experimentation, or compare with the results of simulations to gain additional insight.

3. CMM – Some Early Results

3.1 Analysing Decision Making for Logistics

We have chosen to concentrate on two modes of decision making associated to logistics. The intention is to represent extremes of logistics decision making: supply led and demand driven logistics. The supply led case uses doctrine to push materiel to the units, regardless of what happens during the scenario. The amount being pushed to the units is decided a priori and is not updated over time. The demand driven case uses a daily update of what was consumed to re-supply stocks to previous levels.

The combat model HiLOCA was able to work with these two principles of logistics decision making.

We also analysed the effects of different levels of information sharing on the metrics produced in the CMM. Two levels of clustering within the demand driven logistics example were compared: one where each node works in isolation, and one where some nodes are clustered and share information with their peers.

To provide the network topology and information elements for the CMM, a vignette was chosen from a warfighting scenario. It covers the period at the start of a ground war as a Blue Division acts against screening elements of a Red Division, followed by an engagement against a second Red Division that advances in response to the Blue attack.

In this vignette there are 10 units associated with the logistics function and the three network topologies for the 10 units are shown in Figure 3.

Three structures have been assessed in the CMM with data coming from the vignette. These are:

- (S) Supply: Information on consumption is sent to the second and third line logistics units but the amount supplied to those units is based on a set expectation of use.
- (D10) Demand: Each first and second line unit (10 units total) sends the demand for an asset which is met by their resource manager. The managers do not have access to all demands, but rather deal with each demand separately.
- (D3) Demand: The three second line logistics units are clustered with the subordinates into an information network. The superior units used their knowledge of all of their subordinates’ information elements to update their perception of the current status and needs of each unit.

The first case (S) uses doctrine to push materiel to the units, regardless of what happens during the scenario. The amount being pushed to the units is decided a priori and is not updated over time. The
second case (D10) uses a daily update of what was consumed to re-supply stocks to previous levels. These two cases (S and D10) are extremes in logistic decision making. They have been implemented in HiLOCA to analyse the effect of different logistics methods on combat effectiveness. The third is a variant on the second case but with additional clustering of information. This case uses three clusters which contain the 10 decision nodes (denoted D3).

![Diagram of three networks showing decision nodes and information elements.](image)

Figure 3. Three networks are shown. Decision nodes are shown as rectangles. Each second and third line logistics unit produces an information element. The dashed lines denote clusters of nodes that share a common perception.

The critical information elements could be any of the materiel detailed within HiLOCA. In the example described here, we focus on the consumption of ammunition. The use of ammunition by these units was aggregated to 10 minute increments which produced 144 data points for each asset over the

![Graph of 30mm Consumption](image)

Figure 4. Consumption of ammunition by three logistics units of the blue force over 24 hours of a typical simulation.
course of the day. Figure 4 shows the use over time for three of the logistics units. Due to the stochastic nature of the combat model, usage depends on the run of the model since this affects which of the units are engaged during the 24 hours of the simulation. Consequently the outputs from the CMM will not only be scenario dependent, but also dependent on the exact circumstances of the particular run of the stochastic simulation.

3.2 Results

The Overall Network Performance (ONP) metric for the three cases is shown in Figure 5. The ONP is an overall measure given for a network to show how good the network is at providing for quality decisions. It is bounded between 0 and 1 and takes into consideration measures such as the accuracy, precision, and completeness of the underlying data. The nearer to 1, the ‘better’ the quality of decision being made. Shown in the figure are the averages and ranges over the 24 hour period of the metric for all three cases.

![Overall Network Performance](image)

Figure 5. Overall network performance metric for the three cases. The shaded region defines the minimum and maximum of the value over the 24-hour scenario; the black bar shows the average over time.

The three cases are differentiated based on both the level and the range of the estimates. The levels indicate a better network in the 3 cluster demand-driven case relative to the other two cases. The two lower level cases are quite similar in average and spread, whereas the spread of the 3D case is much larger.

It is expected that the ONP of the demand cases should be better than that of the supply case. However, the overall network performance of the (S) and (D10) cases are quite similar. The actual ONP for the supply case starts high, and tails off during the course of the scenario. The network is well suited at first to providing logistics decision making, and only after many minutes of combat fighting does the network begin to provide a poorer performance. The doctrine that provided the initial estimates of consumption in the supply case were reasonable overall, but as the simulation progressed, the planned average consumption rates did not accurately respond to the surging demands of troops during combat. The (D10) case shows a similar spread of values to the (S) case, however, with a slight increase in the average value over time, and without the temporal characteristics

A large difference arises when the decision nodes are clustered. The cases (D10) and (D3) have the same information elements and number of decision nodes but they differ crucially in the number of clusters sharing information. In the former case, each logistics unit is introduced to one information element, and develops an understanding of the logistics consumption based on that information. In the latter, the decision nodes are able to access other information from neighbouring units which helps to build a better understanding of the situation. Even though both demand cases seem to have a much better understanding of the information elements over time compared with the supply driven case, it is only when the information is shared among decision nodes that the increase in Overall Network Performance becomes evident. In this example, the sharing of information provides a greater increase to the overall ability of the network to perform compared with the location of the decision making.
The differences between the (D10) and the (D3) case is the addition of three clusters in the latter which allows the nodes in the structure to access information produced by their peers. For example, in (D10), the 1st Attack Helicopter Regiment logistics unit is supplied based on its demand alone. In (D3), it is supplied based also on knowledge of what the 2nd and 3rd Regiments use. The information produced by the 1st can be seen and, furthermore, can be compared with the 2nd Regiment and 3rd Regiment. If the elements are correlated to some extent, (which, in this case, they are as witnessed by the similarities shown in Figure 4), the knowledge of one unit can be used to reduce the uncertainty of the estimates for the others.

Operationally, it makes sense that possession of information of the three first line logistics units would provide a better picture to the decision maker at the second line. Previously it has been difficult to describe exactly what effects that information produces. The CMM now provides a series of metrics that account for the correlation between information elements within a network structure and topology.

An example metric is the combination of Accuracy and Knowledge produced by the CMM. Figure 6 below plots the Accuracy and Knowledge metric over time for the three cases run in the study.

The Accuracy and Knowledge metric (also a measure of C2 effectiveness) is bounded between 0 and 1 and relates the expectation and uncertainty of an information element with the actual information element.

The Supply case uses the doctrinally mandated expected use patterns as the baseline, whereas the demand cases apply the actual use as the baseline. In each of the three cases, the baseline is compared with the system value which is calculated through a collection of dynamic linear models.

Figure 6. Accuracy and Knowledge metric for the three networks modelled.

There are two main differences among the three cases. The first is the variation within each data set. A cursory comparison of the three cases reveals that the upper trend has much less variation between adjacent points than the lower two trends. The additional clustering of the D3 example compared with the D10 example, has perhaps relieved the uncertainty of unexpected changes in the information elements. A reduced sensitivity to changes in the information elements is reflected in a less volatile and smoother line. The knowledge of three units engaged in a sudden change in their supply level will be more understandable or palatable to a commander than if only one unit experiences that change.

The second difference among the data is the level of Accuracy and Knowledge. The Supply case exhibits the lowest Accuracy and Knowledge metric, reflecting the large differences between the average doctrinal use of shells compared with the actual use during combat. The two Demand cases provide enhanced Accuracy and Knowledge compared with the Supply case; the baseline is much more closely related to the actual use. The difference between the two Demand cases, one having 10 isolated clusters each having a single node, and one with 3 clusters of aggregated nodes, provides the value of shared information between peers in this example. Recall that the information elements and baselines are the same in both Demand cases. However, the system values calculated through the dynamic linear

5 Knowledge is a function of precision. The means of combining accuracy and knowledge is described in Moffat and Perry (2004).
models are much closer, and hence have enhanced Accuracy and Knowledge, in the case of the more collaborative network. In this example, the 3 cluster demand-driven network provides the clearest picture of the consumption of the subordinate units.

4. Summary

To assess the benefit of improved information sharing on military effectiveness is a formidable challenge. The analysis in this paper is a significant step towards meeting this challenge. The Collaboration Metric Model is a mathematical model which quantitatively measures the benefits of sharing across an information network and the effect this has on the quality of decisions made by commanders. This gives rise to a number of quantitative measures of C2 effectiveness. We are combining this with high level combat modelling in order to link the measures of C2 effectiveness with measures of force effectiveness. This is a developing method which lends insight into the benefits and pitfalls of sharing information across a network. This work represents what we believe to be a significant advance in dealing with the question: how does better information sharing relate to military effectiveness?

Acknowledgement

The authors acknowledge the help of Dr Chris Pernin (RAND Corporation) in the preparation of this paper.

References